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1 Theoretical calculations

The study of spin-orbit interaction (SOI) of light in the non-paraxial regime (particularly in optical

tweezers) requires a robust theoretical framework to accurately describe the behavior of light as it

propagates and interacts with stratified media of varying refractive indices and anisotropic media

containing birefringent particles. The Debye-Wolf theory or the angular spectrum method pro-

vides prominent approaches to analyzing the SOI of light in this regime. The Debye-Wolf-based

angular spectrum method operates in the frequency domain and involves decomposing an incom-

ing collimated structured beam into a superposition of plane waves, each associated with a distinct

spatial harmonic component (k-vector). Before focusing, the collimated beam exhibits cylindrical

symmetry; however, after passing through an aplanatic lens or a high numerical aperture (NA)

objective lens, the beam assumes spherical symmetry. The Debye-Wolf formalism then begins by

calculating the Fourier transform (FT) of the input field Einc, which is subsequently multiplied by

the lens’s transfer function to account for the transformation from cylindrical to spherical coor-

dinates. The resulting output field Eres (or E∞(θ, ϕ)) is obtained by taking the inverse FT. The

focused field is ultimately determined by the linear superposition of the TE (s-polarization) and
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Fig 1 (a) Illustration of the sine condition and intensity law in geometrical optics. The refracted ray and its corre-
sponding incident ray intersect at the surface of the reference sphere (or aplanatic lens), with the energy flux carried
by each ray remaining constant before and after focusing through the aplanatic lens. (b) Geometric representation of
the transformation from cylindrical to spherical coordinates through the aplanatic system.

TM (p-polarization) components of all plane waves, thus retaining the full vectorial nature of the

field in the image plane.1–3

1.1 The Debye-Wolf or Angular spectrum representation

The Debye-Wolf based angular spectrum integral of the focused field can be expressed as:1–3

E(ρ, ψ, z) =
ikfe−ikf

2π

∫ θmax

0

∫ 2π

0

E∞(θ, ϕ)eikz cos θeikρ sin θ cos(ϕ−ψ) sin θdϕdθ. (1)

This integral determines the electric field at the focal plane (or image plane) of a collimated

beam focused through an aplanatic lens or a high numerical aperture (NA) objective lens. Here,

we neglect the evanescent fields and consider only the far-field component, denoted as E∞(θ, ϕ).

The term E∞(θ, ϕ) represents the field at r = (x2 + y2 + z2)1/2 → ∞ (where r is the distance

from the origin). We assume that the fields at r∞ and at the reference sphere (or the aplanatic lens)

are equivalent because the incoming beam is assumed to be paraxially collimated. Therefore, the

distance r∞ between the focal point and the surface of the reference sphere can be replaced by the

focal length of the lens, f .
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To calculate the E∞(θ, ϕ) component of Eq. 1 for the ARP vector beam, we first need to de-

scribe the function of an aplanatic lens and the coordinate transformation through it. This requires

two fundamental principles: (1) the sine condition and (2) the intensity law.

(1) The sine condition:- This condition states that every optical ray either emerging from or

converging to the focal point F of an aplanatic optical system intersects its corresponding conjugate

ray on a reference sphere with radius f , where f is the focal length of the lens (or the radius of

curvature of reference sphere). The distance h from the optical axis to the conjugate ray is given

by h = f × sin θ, where θ is the divergence angle of the conjugate ray, as illustrated in Figure 1

(a).

(2) The intensity law:- This law is based on the energy conservation principle: it ensures that

the energy entering the aplanatic lens is equal to the energy exiting the lens. Mathematically, the

power carried by a ray can be expressed as P = 1
2
Z

−1/2
µε |E|2dA, where Zµε is the wave impedance,

and dA is an infinitesimal cross-sectional area perpendicular to the ray’s direction. As a result, the

fields before and after refraction must satisfy the condition that the energy flux carried by each ray

remains constant, as shown in Figure 1 (a).

|E2| = |E1|
√
n1

n2

√
µ2

µ1

cos1/2 θ (2)

For a non-magnetic medium, the magnetic permeability (µ) at optical frequencies is equal to one

(µ = 1). Thus, Eq.2 simplifies to:

|E2| = |E1|
√
n1

n2

cos1/2 θ (3)
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According to the sine condition, the incident light ray and the refracted ray intersect at a point

on the reference sphere with a radius of f . This intersection point on the surface of the reference

sphere is denoted by (x∞, y∞, z∞), while an arbitrary field point near the focus is represented by

(x, y, z) = (0, 0, 0), as shown in Figure 1 (b). These two points can also be expressed in spherical

coordinates as (f, θ, ϕ) and (ρ, ϑ, ψ), respectively.

The aplanatic lens (or reference sphere) effectively transforms the cylindrical coordinate sys-

tem (associated with the incoming beam) into a spherical coordinate system (associated with the

focused beam). To describe the refraction of the incident rays at the reference sphere, as shown

in Fig. 1 (b), we introduce the unit vectors eρ, eϕ, and eθ. Here, eρ and eϕ are the unit vectors in

the cylindrical coordinate system, while eθ and eϕ are the unit vectors in the spherical coordinate

system. During the coordinate transformation, only eρ transforms into eθ, while the unit vector eϕ

remains unaffected, as shown in Fig. 1 (b).

Considering the more general case where the incoming collimated beam has arbitrary homoge-

neous or inhomogeneous polarization distributions, any arbitrarily polarized field can be expressed

in terms of the s and p orthogonal polarization bases as Einc = Es
inc + Ep

inc. Consequently, we

can easily calculate the refraction at the reference sphere by decomposing the incident field Einc

into its two components: E(s)
inc and E(p)

inc, where the indices (s) and (p) denote s-polarization and

p-polarization, respectively. These two fields can then be expressed using the corresponding unit

vectors as follows:

E
(s)
inc = [Einc · eϕ] eϕ ; E

(p)
inc = [Einc · eρ] eρ (4)

As shown in Fig. 1 (b), these two fields refract at the spherical surface differently. Thus, the
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total refracted electric field, denoted by E∞(θ, ϕ), can be expressed as

E∞(θ, ϕ) = [ts (Einc · eϕ) eϕ + tp (Einc · eρ) eθ]
√
n1

n2

(cos θ)1/2 (5)

Here, ts and tp are the Fresnel transmission coefficients for each refracted ray passing through

the aplanatic lens, and · represents the dot (scalar) product between the incident polarized field and

the corresponding cylindrical unit vector. The factor outside the brackets,
√

n1

n2
(cos θ)1/2, arises

from the intensity law to ensure energy conservation, where n1 and n2 are the refractive indices of

the medium before and after focusing through an aplanatic lens (or reference sphere), respectively.

To conveniently handle the focused field in the Cartesian coordinate system, we need to express

the cylindrical and spherical unit vectors eρ, eϕ, and eθ in terms of the Cartesian unit vectors ex,

ey, and ez, as shown in Fig. 1 (b). This transformation can be achieved using the following matrix:


eρ

eϕ

eθ

 =


cosϕ sinϕ 0

− sinϕ cosϕ 0

cos θ cosϕ cos θ sinϕ − sin θ




ex

ey

ez

 (6)

1.2 Focal fields of spirally polarized vector (SPV) beam

We assume the incoming beam is paraxially collimated and have an anti-clockwise or clockwise

spiral polarization distribution and doughnut intensity profile. Therefore, we can write the incident

ARP doughnut vector mode (Einc = Einc(θ, ϕ) (eρ ± eϕ)) as4, 5

ESPV
inc (ρ, ϕ, z) = (E0/w0) ρ exp

(
− ρ2

w2

) cosϕ± sinϕ

sinϕ∓ cosϕ

 , (7)
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Here, E0 is the overall amplitude factor, and w0 is the size of the paraxially collimated beam

before focusing. The focal field E(ρ, ψ, z) depends on how much the incoming beam is spatially

expanded relative to the lens size. Since the aperture radius of the aplanatic lens is f sin θmax, as

shown in Fig. 1 (a), we introduce the filling factor f0 as f0 = w0

f sin θmax
, where θmax = sin−1(NA/n)

is the maximum angle determined by the numerical aperture (NA) of the objective lens, and n

denotes the refractive index of the medium. Hence, the function fω(θ) = e
− 1

f20

sin2 θ
sin2 θmax is the

apodization function that arises when an aplanatic lens tightly focuses the beam.1, 2, 6 Therefore we

can write equation 7 in terms of the apodization function in spherical coordinates as

ESPV
inc (θ, ϕ) = (E0f/w0) sin θ fω(θ)

 cosϕ± sinϕ

sinϕ∓ cosϕ

 (8)

The back aperture of an aplanatic lens (or microscope objective) typically has a diameter of

about 4.5 mm. To fully utilize the objective lens, the incident field should either fill or slightly

overfill this aperture. We assume that the waist of the paraxially collimated beam is aligned with

the lens and that it strikes the lens with a planar phase front. However, since no lens is ideal, it will

always reflect some portion of the incident light. We assume the objective lens has an effective

anti-reflection coating, allowing us to set the Fresnel transmission coefficients, ts and tp, equal

to 1. However, the focused light from the microscope objective also passes through a stratified

medium with varying refractive indices, as shown in Figure 1 (a) in the main manuscript (ms).

Therefore, we consider the more general case where the Fresnel transmission coefficients, ts and

tp, and reflection coefficients, rs and rp, are not equal to 1. Based on these assumptions and using

Eqs. 6 and 8, we can express Eq. 5, ESPV
∞ (θ, ϕ), as
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ESPV
∞ (θ, ϕ) = (E0f/ω0) fω(θ)

√
n1

n2

(cos θ)1/2 sin θ


tp cos θ cosϕ± ts sinϕ

tp cos θ sinϕ∓ ts cosϕ

− tp sin θ

 (9)

It is important to note that, in general,E∞(θ, ϕ) represents a superposition of both forward- and

backwards-propagating waves in the stratified medium. We evaluate Eqs. 9 only for the forward-

propagating waves, as they provide the dominant contribution. However, these equations can also

be expressed for the backwards-propagating waves by modifying the θ-dependent coefficients ts

and tp. This is done by replacing θ with π − θ. Additionally, the Fresnel reflection coefficients rs

and rp are used instead of the transmission coefficients in this case.3, 7

We use the mathematical relations provided in Eq.10 below to analytically calculate the angular

spectrum integration over ϕ in Eq.1.2, 8

∫ 2π

0

eikρ sin θ·cos(ϕ−ψ)dϕ = 2π J0(kρ sin θ),∫ 2π

0

cosϕeikρ sin θ·cos(ϕ−ψ)dϕ = 2π iJ1(kρ sin θ) cosψ,∫ 2π

0

sinϕeikρ sin θ·cos(ϕ−ψ)dϕ = 2π iJ1(kρ sin θ) sinψ

(10)

Here, J0 and J1 are the zeroth and first-order Bessel functions of the first kind, respectively.

Using equations 1, 9, and 10, we proceed as follows: First, we substitute the value of ESPV
∞ (θ, ϕ)

from Eq. 9 into Eq. 1. Then, we evaluate the integral over ϕ separately using Eq. 10 and substitute

it back into Eq. 1. Consequently, the final expressions for the focal field in Eq. 1 now involve

a single integration over the variable θ, which can be expressed in terms of the Debye–Wolf (or
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diffraction) integrals as follows:


Ex

Ey

Ez



ACW/CW

SPV

=


i (I1 cosψ ± I2 sinψ)

i (I1 sinψ ∓ I2 cosψ)

−I0

 (11)

Similarly, we can calculate the magnetic field in terms of Debye–Wolf (or diffraction) integrals

as follows:


Hx

Hy

Hz



ACW/CW

SPV

=


±i (I1 cosψ ∓ I2 sinψ)

±i (I1 sinψ ± I2 cosψ)

∓I0

 (12)

Where E⃗ACW/CW
SPV = Erad±Eazi and H⃗ACW/CW

SPV = H rad±Hazi are the electric and magnetic fields

of the focused light, respectively. The subscript “SPV” represents the spirally polarized vector

(SPV) beam, while the superscripts “ACW” and “CW” denote the anti-clockwise and clockwise

spiral polarization directions, respectively. It is important to note that the magnetic field is CW in

nature for the input ACW-SPV beam; however, it is ACW in nature for the input CW-SPV beam,

with equal and opposite non-zero z-components in both cases. The diffraction integrals for the

transmitted and reflected waves, I0 = I t0(ρ)+I
r
0(ρ), I1 = I t1(ρ)+I

r
1(ρ) and I2 = I t2(ρ)+I

r
2(ρ), are

determined by the polar angles of incidence (θ) of the plane waves, and by Fresnel’s transmission

(ts, tp) and reflection (rs, rp) coefficients. These integrals encapsulate the strength of the spin-orbit
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Fig 2 Numerical simulations of the squared magnitudes of the electric field components: (a) |Ex|2, (b) |Ey|2, and (c)
|Ez|2 at a distance of z = 2, µm from the focus for a refractive index (RI) of 1.814, using a high numerical aperture
(NA) objective lens. (d) Comparison of the electric field intensities of the transverse and longitudinal components
relative to the total field intensity (transverse + longitudinal) at both off-axis and on-axis (beam center) positions in
the transverse plane.
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conversion, which are given as:2, 3, 9, 10

I t1(ρ) =

∫ θmax

0

fω(θ)
√
cos θ sin2 θ

(
tp(1, j) cos θj

)
J1 (k1ρ sin θ) e

ikjz cos θj dθ,

I t2(ρ) =

∫ θmax

0

fω(θ)
√
cos θ sin2 θ

(
ts(1, j)

)
J1 (k1ρ sin θ) e

ikjz cos θj dθ,

I t0(ρ) =

∫ θmax

0

fω(θ)
√
cos θ sin2 θ

(
tp(1, j) sin θj

)
J0 (k1ρ sin θ) e

ikjz cos θj dθ,

Ir1(ρ) =

∫ θmax

0

fω(θ)
√
cos θ sin2 θ

(
−rp(1, j) cos θj

)
J1 (k1ρ sin θ) e

−ikjz cos θj dθ,

Ir2(ρ) =

∫ θmax

0

fω(θ)
√
cos θ sin2 θ

(
rs(1, j)

)
J1 (k1ρ sin θ) e

−ikjz cos θj dθ,

Ir0(ρ) =

∫ θmax

0

fω(θ)
√
cos θ sin2 θ

(
rp(1, j) sin θj

)
J0 (k1ρ sin θ) e

−ikjz cos θj dθ,

(13)

The superscripts t and r indicate the transmitted and reflected components, respectively. The

subscript j specifies the layer of the stratified medium where the trapping laser of the optical

tweezers is focused.

2 Numerical Simulations

Our simulations focus on the tight focusing of the input ACW-SPV/CW-SPV beam through a high

NA objective lens into a stratified medium, as described in the main manuscript. The electric and

magnetic fields of the SPV beam in the focal plane exhibit components not only in the transverse

direction but also in the longitudinal direction, due to the fact that the zero-order Bessel function

of the first kind, J0, is non-zero at the beam’s focus. As mentioned in the main manuscript, the

transverse components of the electric field are governed by the Debye–Wolf integrals I1 and I2,

which involve the 1st-order Bessel function J1, while the longitudinal component is determined

by I0, which involves the 0th-order Bessel function J0. In Figs. 2 (a) and (b), the intensity lobes

corresponding to the x and y components of the electric field (|Ex|2 and |Ey|2) are oriented at 45◦
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and -45◦ (or 135◦), respectively. The intensity lobe patterns arise from the linear combination of

cosψ and sinψ in the expressions forEx andEy (see Eq. 11). However, the intensity corresponding

to the z component of the electric field (|Ez|2) forms a concentric ring, as shown in Fig. 2 (c).

In Fig. 2 (d), the comparison of the electric field intensities of the transverse and longitudinal

components relative to the total field intensity (transverse + longitudinal) is shown for both off-

axis and on-axis (beam center) positions in the transverse plane. The intensity corresponding to

the longitudinal component of the electric field is mostly concentrated at the beam center and

less distributed at the off-axis position. In contrast, the intensity corresponding to the transverse

component of the electric field is predominantly concentrated at the off-axis position and less

distributed near the beam center.

2.1 Comparison of LSAM distributions before and after the focus

The characteristics of LSAM distributions before and after the focus exhibit distinct differences.

In Fig. 3(c), we plotted the LSAM distribution at the focus and observed that, for an input anti-

clockwise spirally polarized vector (ACW-SPV) beam, the spatially resolved LSAM distribution

closer to the beam center (i.e., the first annular ring of LSAM) is positive (σ = +1), while the

second consecutive annular ring is negative (σ = −1). For an input clockwise spirally polarized

vector (CW-SPV) beam, the distribution pattern of LSAM remains the same, but the signs of

σ = +1 and σ = −1 are reversed. Beyond the focus (i.e., for positive values of z), the same

LSAM distribution characteristics persist, as shown in Figs.3(d) and (f).

However, before the focus, the separation of σ = +1 and σ = −1 helicities occurs not only in

the transverse plane but also along the axial direction (z-axis), as illustrated in Figs. 3(a), (b), and

(e). For an input ACW-SPV beam, at the focus and at z = −2µm before the focus, the first and
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Fig 3 Numerical simulations of longitudinal spin angular momentum (LSAM) for an input anti-clockwise spirally
polarized vector (ACW-SPV) beam before and after the focus of a high numerical aperture (NA) objective lens, with a
refractive index (RI) of 1.814: (a) and (b) LSAM distributions at distances of z = −2, µm and z = −1, µm before the
focus, respectively. (c) LSAM distribution at the focus. (d) LSAM distribution at a distance of z = +1, µm after the
focus. (e) and (f) Comparisons of LSAM distributions before and after the focus, respectively, for the input ACW-SPV
beam.

second annular rings of the LSAM correspond to the σ = +1 and σ = −1 helicities, respectively.

Conversely, at z = −1µm and z = −3µm before the focus, the first and second annular rings

of the LSAM correspond to the σ = −1 and σ = +1 helicities, respectively (see Fig. 3(e)).

Therefore, a three-dimensional spin Hall effect exists before the focus, while the SHE is confined

to the transverse plane after the focus.11 Comparisons of LSAM distributions before and after the

focus are shown in Figs. 3(e) and (f). It can be observed that the magnitude of LSAM (for both

σ = +1 and σ = −1) is greater before the focus than after the focus. Furthermore, at the focal

plane, the magnitudes of σ = +1 and σ = −1 are approximately equal. However, both before and

after the focus (i.e., for negative and positive values of z), the magnitude of LSAM density near

the beam center dominates over the off-axis LSAM density.
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